Diametrically critical tournaments
نویسندگان
چکیده
منابع مشابه
Partially critical tournaments and partially critical supports
Given a tournament T = (V, A), with each subset X of V is associated the subtournament T [X] = (X, A∩(X×X)) of T induced by X. A subset I of V is an interval of T provided that for any a, b ∈ I and x ∈ V \I, (a, x) ∈ A if and only if (b, x) ∈ A. For example, ∅, {x}, where x ∈ V , and V are intervals of T called trivial. A tournament is indecomposable if all its intervals are trivial; otherwise,...
متن کاملInfinite families of (n+1)-dichromatic vertex critical circulant tournaments
In this talk we expose the results about infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by Neumann-Lara [6], who later proved it for all r ≥ 3 and r = 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r = 7, which complete th...
متن کاملDiametrically complete sets in Minkowski spaces
We obtain a new characterization of the diametrically complete sets in Minkowski spaces, by modifying two well-known characteristic properties of bodies of constant width. We also get sharp inequalities for the circumradius and inradius of a diametrically complete set of given diameter. Strengthening former work of D. Yost, we show that in a generic Minkowski space of dimension at least three t...
متن کاملLocal Tournaments and In - Tournaments
Preface Tournaments constitute perhaps the most well-studied class of directed graphs. One of the reasons for the interest in the theory of tournaments is the monograph Topics on Tournaments [58] by Moon published in 1968, covering all results on tournaments known up to this time. In particular, three results deserve special mention: in 1934 Rédei [60] proved that every tournament has a directe...
متن کاملt-Pancyclic Arcs in Tournaments
Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky
سال: 1975
ISSN: 0528-2195
DOI: 10.21136/cpm.1975.117889